
AD-AD817 196 WOODS HOLE OCEANOGRAPHIZC INSTITUTION MASS F/6 B/1
I A DATABASE FOR ZOOPLANKTON NET TOW DATA. CU)

JU 80 M M HUNT, P H WIEBE NO001-79-C0071

U MLAS S1FIEn W 14I- 8- 28 NM.

MOE IIENEEEEE

UNCLASSIFIED 6/80
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)__________________

WH6-80-28

A DATABASE FOROOPLANKTON, NET TOW DATA# ehia

/0 Mry M/4lut ~N06614-79-C-0071

Woods Hole Oceanographic Institution

I1. CNOLL~NG AGENCY NAME AN ADRESS iirn rn otbilj01C)1.SCRT LS.(fti eot

Unclassified

15a. OECL ASSI FICATION/ DOWN GRADING
SCHEDULE

IS. DISTRIBUTION STATEMENT (of tis Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of te abstract entered In Block 20, ft different froo Report)

18. SUPPLEMENTARY NOTES

13. K(EY WORDS (Continue an reverse olde it necessary eam. 1lentib' by black numbi er)

1. MOCNESS Net Tows
2. CODASYL Database for Zooplankton

-3. Zooplankton Data Storage and Retrieval

21K 1 STRACT (Continue on reverse side It necesary and Identity by block numiber)

This report describes the design and implementation of a database to store

zooplankton net tow data and the applications programming done to update and
access the database using the Sigma 7 Extended Database Management System.
The database contains information about each tow (cruise name, tow number,
type of tow, year, month, day, time of day, longitude, latitude, area of tow,
day-night code); each sample (depth code; minimum and maximum depth; minimum,
maximum and average values of temperature, salinity, oxygen, (Con. on back

DD I FJA~, 1473 EDITION OFt IN49 IS OBSOLETE UNCLASSIFIED 6/80
SIN OlO2-014-66u I / r~ 9 SECURITY CLASSIFICATION OF THIS PAGE (When De. ate rerd)

.d6-

(,URITY CLASSIFICATION OF THIS PAGEtWhef Data Eonomd)

'light and chlorophyll; total biomass, aliquot size, and volume of water
filtered); each species (family, genus, species names, and catch per 1000
m 1). Information can be retrieved by user-written applications programs or

the Sigma 7 Interactive Database Processor, which can either print a
report of the retrieved data or store it in a file for further processing.
As presently formulated, the database can store up to 500 tows or samples.
10 families, 100 genera, 500 species and 50,000 catch records.

DDC TAB

1 a-,mou n .c ed El
Justif'ic to

By _ - ..

I>

Dist~'~

SECuRITY CLASSIFICATION OF THIS PAGr(WIhe Date Entered)

•0E . Lill

WHOI-80-28

A DATABASE FOR ZOOPLANKTON NET TOW DATA

by

Mary M. Hunt

and

Peter H. Wiebe

WOODS HOLE OCEANOGRAPHIC INSTITUTION
Woods Hole, Massachusetts 02543

June 1980

TECHNICAL REPORT

Prepared for the Office of Naval Research under Contract
N00014-79-C-0071; NR 083-004.

Reproduction in whole or in part is permitted for any
purpose of the United States Government. This report
should be cited as: Woods Hole Oceanographic Institu-
tion Technical Report WHI01-80-28.

Approved for public release; distribution unlimited.

Approved for Distribution: .
S6rge D rid, Chairman

.1 Department of Biology

A DATABASE FOR ZOOPLANKTON NET TOW DATA

CONTENTS

Abstract i

I. Introduction 1

II. Database Description 3

III. Recommended Operating Procedures 12

IV. To Initialize, Store, and Restore Database
Use of Auxiliary Processors 14

V. Formats for Input Data 16

VI. Pre-processing Programs: SPLECK and PLANKINT 24

VII. Program to Update Database: ZOOPUP 34

VIII. Interactive Database Processor (IDP) 44

IX. Applications Programs: TOWINIT and FAMINIT 47

X. Database Definition in DDL 62

Acknowledgements 65

i:

Abstract

This report describes the design and implementation of a

database to store zooplankton net tow data and the applications

programming done to update and access the database using the

Sigma 7 Extended Database Management System. The database con-

tains information about each tow (cruise name, tow number, type

of tow, year, month, day, time of day, longitude, latitude,

area of tow, day-night code); each sample (depth code; minimum

and maximum depth; minimum, maximum and average values of

temperature, salinity, oxygen, light and chlorophyll; total

biomass; aliquot size; and volume of water filtered); each

species (family, genus, species names, and catch per 1000 m3
).

Information can be retrieved by user-written applications

programs or with the Sigma 7 Interactive Database Processor,

which can either print a report of the retrieved data or store

it in a file for further processing. As presently formulated,

the database can store up to 500 tows or samples, 10 families,

100 genera, 500 species and 50,000 catch records.

Keywords: MOCNESS Net Tows, CODASYL Database for Zooplankton,

Zooplankton Data Storage and Retrieval.

Woods Hole Oceanographic Institution Project Number 10/71.54

'1
t -1i-

I. Introduction

Extensive sampling with nets of the zooplankton populations in the
Northwestern Atlantic Ocean between 1972 and 1978, and subsequent laboratory

analysis of the samples, have resulted in a large amount of information

about the abundance of species in the samples and the physical circumstances

under which the samples were collected. In order to analyze these data

efficiently, it became obvious that a database and retrieval system had to

be constructed. This report documents the implementation of such a data-

base and the construction of applications programs to update and access the

database. This database relies on the Extended Database Management System

(EDMS) which is a part of the operating system of the Honeywell Sigma 7

Computer at the Woods Hole Oceanographic Institution. The remainder of

this introduction is a brief description of the EDMS system.

The Extended Database Management System consists of several different

processors, and a group of library subroutines. The steps involved in

database creation and use are:

1. The first step is to prepare a formal description of the database to
be created, using Data Definition Language (DDL). This description
is processed by the File Definition Processor, DMSFDP. Two random
files are created: a schema file which is a description of the data-
base used by other processors, and a subschema file which is used by
the Data Base Manager.

2. The second step is to initialize the database, using the processor
DMSINIT. This processor uses information from the schema file to
create a file having the attributes specified in the DDL, but con-
taining no data.

3. Information is stored in the database, and can be retrieved, by
applications programs which use a set of library routines referred to
collectively as the Data Base Manager (DBM).

4. The Interactive Database Processor, IDP, can be used to retrieve
information from the data base. It can either print a report of
retrieved data, or store it in a file.

5. Two processors are supplied which facilitate back-up of the database.
Saving the database file is done by DMSDUMP, and restoration is done
by DMSLOAD.

-2-

6. There are three Data Control Blocks (DCB's) through which the system
accesses the various files.

F:SCHE for the schema file file name is ZOOSCHEM
F:SSCH for the subschema file file name is ZOOPLAN
F:DBOl for the database file file name is ZOOSTOR

Details about the use of the processors are included later in this
report. It should be noted that the name of the file containing the
database, and the names of the schema and subschema files are
contained in the DDL, and cannot be changed.

The following section of this report (section II) contains a complete

description of the database. The following sections give details about how

to use the database. The entire report, except perhaps section X, should

be read carefully before attempting to store information in the database.

It cannot be emphasized too strongly that extreme care should be taken in [
preparing data to be stored in the database.

r.

.1t

-3-

II. Database Description

Our database contains information about the results of plankton tows.

This information includes data describing the tows, and individual samples

within the tows. It also includes the number of each species found in

each sample.

The reasons for storing this information in a database are:

1. To avoid repetition of genus and species, and tow and sample
numbers, in every catch record.

2. To facilitate processing either by sample or by species.
Some applications compare the catch from different samples,
while others study the samples in which a specific species
was found.

3. Relative ease of adding new data.

The database is defined in terms of groups and sets. A graphic

representation of the database is given in Figure 1. Each group defines a

collection of related attributes which bear a one-to-one relationship to

each other. For example, information about tows is a group; actual data

about one specific tow is called a group occurrence. In Figure 1, each

group is represented by a box; the group-name is printed in large letters

in the middle of the box. The first group, ZOOHEAD, is a header group used

by the Data Base Management routines, and contains no actual data.

The arrows in Figure 1 show the links between groups. These links are

called sets; the set-name is printed beside the arrow, and is underlined.

Each set points from one owner group to one member group. This connects

one occurrence of the owner group to one or more occurrences of the member

group. For example, an occurrence of the TOWDATA group (information about

a specific tow), would be linked with one or more occurrences of the sample

group (information about samples from the tow). The set linkages allow

backward access; it is possible for a given SAMPLE occurrence, to find the

owner from the TOWDATA group.

.1

-4-

These links make it possible for a user program to access all samples

(and tows) in which a given species occurred, or to find all species

present in a given sample.

The order in which group occurrences are accessed depends on the data-

base definition and on the order in which the occurrences were stored.

Occurrences of the FAMILY, GENUS, and TOWDATA groups will be accessed in

the reverse order to which they were stored. Occurrences of these groups

can also be accessed individually by name. Occurrences of the SPECIES and

SAMPLE groups will be accessed in the same order in which they were stored.

Occurrences of these two groups cannot be accessed except through an

occurrence of the group that owns the set of which they are members. For

example, it is not possible to access a species name (or the catches

associated with it), except through the name of the genus to which the

species belongs.

Details of the items included in each group, maximum number of

occurrences, and other parameters, are included. Knowledge of the database

structure, and items included in each group, are required for use of the

Interactive Database Processor (IDP).

Figure 1.

ZOOHEAD

DIRECT 100

TOWSET FAMSET
F F

TOWDATA FAMILY

CALC 200 CALC 3001
GENUSET

SAMSET F
NO

GENUS

SAMLECALC 310

SPECSET

VIA 2101 NO

SPECIES

SAMCAT VIA 320
NO01

SPECAT
FO

CATCH

VIA SPECAT 400

-6-

GROUP NAME: TOWDATA

CONTENTS: Information pertaining to tow

Member of TOWSET r
Owner of SAMSET

Item Contents Type # Words Commtnts
Name-

* CRUISE cruise name Alpha,4 1 4 characters to identify cruise

* TOWNUM tow number Alpha,4 1 4 character tow number

TOWTYP type of tow Alpha,4 1 4 character tow type

FAMCODE code to identify Integer 1 each bit corresponds to a
families family

YEAR year Integer 1 2 digit year

MONTH month Integer 1 2 digit month

DAY day of month Integer I I

TIME time of day Integer 1 24-hour clock format

LONGTUDE longitude Real 1 + for east, - for west

LATUDE latitude Real 1 + for north, - for south

REGION area of tow Alpha,4 1 user-selected code

NITEDAY day-night code Alpha,l 1 D for day, N for night

Total 12 words of data

4 words for pointers

Maximum number of occurrences anticipated = 500

* Control items for retrieval of group occurrences

J

7-

GROUP NAME: SAMPLE

CONTENTS: Information pertaining to sample

Member of SAMSET

Owner of SAMCAT

Item Contents Type # Words Comments
Name

DEPCODE depth code Alpha,4 I To identify integrated samples

DEPMIN minimum depth Integer I Minimum depth of sample
DEPMAX maximum depth Integer I Maximum depth of sample

TEMIN minimum temperature Real I
TEAVG average temperature Real I
TEMAX maximum temperature Real i

SALTMIN minimum salinity Real 1
SALTAVG average salinity Real 1
SALTMAX maximum salinity Real 1

OXMIN minimum oxygen Real 1
OXAVG average oxygen Real 1
OXMAX maximum oxygen Real 1

LIGHTMIN minimum light Real I
LIGHTAVG average light Real 1
LIGHTMAX maximum light Real 1

CHLRMIN minimum chlorophyl Real 1
CHLRAVG average chlorophyl Real 1
CHLRMAX maximum chlorophyl Real 1

BIOMASS total biomass Real I

ALIQUOT aliquot size Real 1 Fraction of sample studied (8=1/8)

VOLFIL volume of water Real 1 In cubic meters
UNDEF undefined Integer 5 Room for expansion

Total 26 words of data

4 words for pointers

Maximum number of occurrences anticipated = 500

-8-

GROUP NAME: FAMILY

CONTENTS: Names of Families included in data base

Member of FAMSET

Owner of GENUSET

Item Contents Type # Words Comments
Name

* FAMNAME Family name Alpha, 17 5 Names can have up to

17 characters

Total 5 words of data

4 words for pointers

Maximum number of occurrences anticipated = 10

* Control item for retrieval of group occurrence.

I

.1.----

-9-

GROUP NAME: GENUS

CONTENTS: name of each Genus included in database

Member of GENUSET

Owner of SPECSET

Item Contents Type # Words Comments
Name _

* GENAME Genus name Alpha,18 5 Up to 18 characters

Total S words of data

4 words for pointers

Maximum number of occurrences anticipated = 100

* Control item for retrieval of group occurrence.

.1

-10-

GROUP NAME: SPECIES

CONTENTS: name of each Species found

Member of SPECSET

Owner of SPECAT

Item Contents Type # Words Comments

Name__________ _____________

SPENAME species name Alpha, 16 4 Up to 16 characters for
species

Total 4 words for data

4 words for pointers

Maximum number of occurrences anticipated 500

GROUP NAME: CATCH

CONTENTS: number of species in sample

Member of SPECAT

Member of SAMCATA

Item Contents Type # Words Comments
Name__________ _______________

NPCUM catch per 1000 Real 1 Can always go back to countI

Note: For integrated samples (Depth code =99) this means catchI

per 1000 meters of depth per 1000 cubic meters. I

Total 1 word of dataI

4 words for pointers

Maximum number of occurrences anticipated =50,000 iil

j

,:71_17"

- 12 -

III. Recommended Operating Procedures

A database is different from an ordinary file. It is not possible to

enter, delete, or change information, except through software created for

the purpose. Program ZOOPUP has been written to update the ZOOSTOR database.

Before using ZOOPUP to add information, Program SPLECK should be used to

check for errors in the input file.

The operations required fall into two categories: those that must be

done once to get started, and those that are repeated for every update.

Operations in the first category are:

1. Run DMSFDP to create the schema and subschema files.

2. Run DMSINIT to create and initialize the database file.

3. Run ZOOPUP to add Family, Genus, and Species names to the
database.

Operations which will be performed periodically are:

1. Run Program SPLECK to check the input file.

2. Run Program PLANKINT if necessary, to create integrated
samples.

3. Run ZOOPUP to add new information to the database.

4. Use IDP, or a test program, to see if the previous operation
was successful.

5. Use DMSDUMP to save database on labelled tape.

Accessing the information can, of course, be done at any time, and

presents no danger to the integrity of the data.

The following recommendations should be given consideration:

1. Keep all runs, plainly labelled as to what they are.

2. Keep a notebook of updates.

3. Do not enter data directly from cards. Always copy the cards
to a file, and use Program SPLECK to check for errors, until
none are found.

-13-

4. Do not try to add all your data in one run. Try one cruise
at a time.

5. Be sure to use FILECAT as needed, so your schema, subschema,
and database files will not be purged.

6. Keep two labelled tapes for backup with DMSDUMP. Alternate
their use, so you will always have the two most recent updates.

L1v0

= ii

- 14 -

IV. To Initialize, Store, and Restore Database
Use of Auxiliary Processors

This section describes the use of processors to initialize, save, and

restore a database.

A. DMSFDP

The first step is to process the Data Definition Language description

of the database, and create the schema and subschema files. This is

accomplished by DMSFDP. The following job set-up should be used:

!JOB
!LIMIT (CORE,20)
!SET M:SI /FILEDESC
!DMSFDP

The file definition, written in DDL, is read through the M:SI DCB.

The schema and subschema files are created. If schema and/or subschema

files with the same names already exist, they must be deleted.

B. DMSINIT

This processor must be run before information can be stored in the

database. It creates a file having the characteristics specified in

the file definition, but containing no data. The job set-up is:

!JOB
!LIMIT (CORE,20)
!SET F:SCHE /ZOOSCHEM

!SET F:DBO1 /ZOOSTOR

!DMSINIT

DMSINIT can also be used to reinitialize all, or part of, an existing

database. In this case, one data card must be added to the above job:

AREA=ZOOSTOR RANGE=(pl,p2). where pl and p2 are, respectively,
the first and last pages to be
reinitialized.

!EOD

DON'T forget the period at the end of the data card.

=I

- 15 -

C. DMSDUMP

After every successful update to the database, the new version should

be stored on a labelled tape. This is accomplished by DMSDUMP:

!JOB
!LIMIT (9T,i), (CORE,20)
!MESSAGE 9T tapid *WRITE*
!SET F:DUMP LT#tapid/filid
!SET F:SCHE /ZOOSCHEM
!SET F:DBO1 /ZOOSTOR
.DMSDUMP
DUMP.

D. DMSLOAD

If a job to update the database aborts for any reason, the database

will not be properly closed, and will not be able to be used. When

(or if) this happens, it will be necessary to restore the previous

version. This is accomplished by DMSLOAD:

!JOB
!LIMIT (9T, 1),(CORE, 20)
!MESSAGE 9T tapid INPUT
!SET F:LOAD LT#tapid/filid
!SET F:SCHE /ZOOSCHEM
!SET F:DB01 /ZOOSTOR
'DMSLOAD
LOAD.

Note: DMSLOAD will not work correctly if the labelled tape file name
is the same as the database file name. Do not use ZOOSTOR as the

labelled tape file name.

Jc

16 -

V. Formats for Input Data

There are two different kinds of files used by the three programs

(SPLECK, PLANKINT, and ZOOPUP). The first file contains Family, Genus, and

Species names, and the second file contains Tow, Sample, and Catch informa-

tion. Programs SPLECK and ZOOPUP use both files; Program PLANKINT requires

only the tow file.

The family file is very simple. It contains one record for each species.

The records should be sorted by Family and Genus. The record format is:

columns Contents

1-17 Family name

21-38 Genus name

41-56 Species name

The tow file contains four different kinds of records, distinguished by

the first four characters of the record. The kinds of records, and record

identifiers, are:

T Tow record

S1 Required (first) sample record

S2 Optional (second) sample record

C Catch record

These records should be in the following order:

Tow record for first tow
Sample record 1 for first sample of tow
Sample record 2 for first sample of tow

Catch record for sample
Catch record for sample

Sample record 1 for second sample of tow
Sample record 2 for second sample of tow

Catch record for sample
Catch record for sample

iL

- 17 -

Tow record for second tow
Sample record 1 for first sample of tow
Sample record 2 for first sample of tow

Catch record for sample
Catch record for sample

etc.

The formats of the different kinds of records are given in Tables 1, 2,

3, and 4. Figure 2 contains a graphical layout of all four kinds of records.

Samples of both kinds of files are included.

V

.1

-18-

TABLE 1

Tow Record Format

Columns Contents

1 T to identify tow data

2-4 blank

5-8 Cruise name, 4 characters alpha

9 blank

10-13 Tow name, 4 characters alpha

14' blank

15-18 Tow type, 4 characters alpha

19 blank

20-21 Year, 2 digits

22-23 Month, 2 digits

24-25 Day of month, 2 digits

26 blank

27-30 Time, 24-hour clock

31 blank

32-35 Region, 4 characters alpha

36 Day-night code, 1 character alpha

37 blank

38-44 Longitude, of form ±xxx.xx

45 blank

46-51 Latitude, of form ±xx.xx

52 blank

53-72 In each 2 columns, punch a code corresponding
to one of the Families identified. If only
one Family, there will be only 1 code.
Could be:

01 = Euphausids
02 = Copepods

jLm 7

- 19 -

TABLE 2

Format of Sample Record 1

Columns Contents

1-2 Si to identify first sample record

3-4 blank

5-8 Depth code, up to 4 characters, alpha

9 blank

10-14 Minimum depth (right-justify)

15 blank

16-20 Maximum depth (right-justify)

21 blank

22-24 Aliquot size, integer

25 blank

26-31 Volume of water filtered (cubic meters)

32-38 Biomass

39 blank

40-44 Minimum temperature L

45 blank Punch decimal

46-50 Average temperature xx.xx

51 blank or

52-56 Maximum temperature -x.xx

- 20 -

TABLE 3

Format of Sample Record 2

Columns Contents

1-2 S2 to identify sample record 2

3-4 blank

5-10 Minimum, Average, and Maximum salinity
11-16 form xx.xxx or xx.xx punch decimal
17-22

23 blank

24-27 Minimum, Average, and Maximum oxygen

28-31 form x.xx or xx.x punch decimal
32-35)
36 blank

37-43 Minimum, Average, and Maximum light

44-50 form .xxExx or xx.Exx
51-57

58 blank

59-63 Minimum, Average, and Maximum chlorophyl
64-68 form xx.xx or x.xxx punch decimal
69-73

TABLE 4

Catch Record Format

Columns Contents

1 C to identify catch record

2-4 blank

5-25 Genus name

26-41 Species name

45-50 Number (free field)

J

" J•.... --" - 21 -

' -bb

.. .- - . .

.i .Q.. . .. - = . .

...... i----.

.... .,-* _.- C

-

,..-.:.... .

-22-

SAMPLE OF: FAMILY/GENUS/SPECIES INPUT

EUPH.AtJSIDS BENTHEUPHAIJ5IA AM86YUPS
EUiPH.AUSIOS EUPHAUSIA AMERICANA
EUPHAUSIDS ELJPHAUSIA BREVIS
EUPHAUSID5 EUP"4AUSIA GI~bl~S
EUPHAUSIDS EUPHAUSIA HEMIUIBUA
EUPHAUSIDS F-UPHAUSIA KIeHNII
EURPHAWSIDS £FJPHAUSIA MUTICA
EUPI4AUSIDS EUPHAUSIA PSEUQeG~bBA
EUPHAUSIDS EUPHAUSIA TENERA
EUPHAVSIDS MEGANYCTIPH.ANES NeRVEUICA
EUPHAUSIDS NEMATttBRANCHION tels
EUPHAUSIDS NEMATOBRANCHION FLEXIWIES
EUPHAUSIDS f.4EMA~T"BRANCH~eN SEXSPINUSUS
EUPHAuSIDS NEMATeSCEL.IS ATLANTILA
EUPHAUSIDS NEMATdSCELIS MEGAL.UPS
EUPHAUSIDS NEMATOSCELIS MICHWJS
EUPHAUSIDS NEMATeSCELIS TENELL.A
EUPHAU310S STYL.BCHEIReN A68HLVIATUM

EUPHAUSIDS STYL.5CHEIReN AFFIN
EUP'4AUSIDS STYLOCHEIReN CARINATLJM
EUPHAUSIDS STYI.OCHEIRON ELeNUATUM
EUPHAUSIDS STYLOCHEIReN LONUI~eNNE
EUPHAUSIDS STYLeCHEIRON MAXIMUM 9
EUPHAUSIDS STYLOCHEIRON SHI
EURHAUSIDS THYSANeJESSA GREUAJA

EUPHAUSIDS THYSANOESSA PARVA
EQPHAUSIDS THYSAN5PODA ACUTIFRONS
EUP*4AUSIDS TH4VSAN5PUDA AEQUAL.IS
EUP.HAYSIDS THYSANePeDA CRISTATA
LUFHAUSILDS THYSANIPeOA MUNOCANTHA
EUPH'AUSIDS THYSANePeDA 06TUJSIFRCNS
EUPHAUSIDS THYSANePODA eRIENTAI.IS
EUPHAUSIDS THYSANePeDA PECTINATA
E.UPHAUSIDS TH.YSANOeteA TRICUSPIDATA
COPEPODS PARL.UCHE4ATA NeRVLUICA

A1

-23-

SAMPLE OF: TOW/SAMPLE/CATCH INPUT

T K(062 45 MOCI '61204 2243 CCRN *065.33 436.12 01
S1 1 900 -0n 3a. B.~0 5*1C-5.2t;
S2 35.00 35.00 35smo
C THYSANOeLSSA 6eN.I1CAUDATA
C THYSAN5LSSA PARVA ----

SI 2 700 90M 677 26.6 5925 6929 7.75
S2 35.00 35.04 35.o________ ___ __

C NMATOSCELI S -MEGkL5PS __ ___

C NPMAT9SLELIS mlckt~ps

C THYSA'N4ESSA PARVA 10
-C THYSA~'50JA~------C T F 5 S 1 ~ _
Si 3 55 70m 1 542 27.7 7:7b 8.50 10900
52 35@08 35.36 35.'18

-C -----EUPHAUSIA -_____ENLRA-______ __-__

C NEMATUSLELIS MEGAL,5PS 173
C THVSANOESSA GREUARIA
--- T.MYSANUESSA ~A VA-_____
Sl 4 4~00 55n 1 623 32.1 10.00 10.50 13*2b
S2 35.38 3!3.44 35oA8
- EMATtSELS MEALOPS 157
C NEMATUSLELIS MICRL4PS I
C NEMATUSCELIS TENELLA I

-C-2.-T1YL)SANfJSSA ___ ___ -ARYA______ ______

Si 5 Soo 4Qfn 1 472 25.4 13*2b 14.00 14*7s
S2 35.68 3b978 35*R6

~AJIA~SCLISMFrA48PS 78
C STYLSCH.IbN ELONGATUM 1
C THYSANOLSSA PARVA 1
C THYSANO'PDA OBTUFRTNS 1
Si 6 200 30'n 1 455 48.4 14.7b 15*75 16.75
S2 35.86 36.02 36917

.C-EVPHAUSIA - ---- -- KRRiHNI I____-1
C NEMATUSELIS MEGALUfrS
C STYLOCHEIRON ABBREVIATUM 2
C STYLOCH*.IRON AFFINE b
C STYLOCHEIRON ELON-GATUM 11
C THYSANeESSA GREGARIA2
C HYANUPODA AFOU AL IS 3
Si 7 100 200 1 496 3002 1697b 17.75 20030
S2 36.17 36.18 36916
C EUP4AUSIA HE M16IBA 13
C EUPHAUSIA KR!eHNII 17
C CUPHAUSIA TENERA
~C NEMTSCELIS __MEGALOePs 5 _____

C STYLOCHEIRON ABF3NEVIATUM 4
C STYLeCHLIRON AFFINE 10
-STCE IRe N CARINATum 44
C STY~eCHEIRON ELeNGATUM
C STYLOCHEIReN SUHMI!
C __THYSANOESSA LiREUiARIA I
C THYSANOLSSA 40NUiICAUDATA 1
C THYSAN5D'eDA AEGUALIS i
Si 8 _1 _ 10' 1 473 5992 2030_20,30 WQ3
S2 36.22 36.2236'
C EUPHAUSIA AMERICANA1
_Q-EUPHAUSIA _____ _REVIS -- 16__
C EUPHAUSIA HEMIGIbOA

C EUPHAUSIA KRIHNI 1

24 -

VI. Pre-processing Programs

Two pre-processing programs have been written, one or both of which

should be run before additions of data to the database. The first program,

SPLECK, shculd be run at least once before each run of ZOOPUP, to check for

errors in the input file. It checks for spelling errors in Genus and

Species names, and for valid values in numeric fields. It should be run

until no errors are found.

The second program, PLANKINT, is used for tows which include samples

from different depths. For each such tow, it creates an additional sample,

with a depth code of '99', combining the catch data from all other samples

of the tow. For the added sample, the number included on the catch record

is the number of species caught per 1000 meters of depth, per 1000 cubic

meters of water filtered.

Reports of these two programs follow.

j

25 -

NAME: SPLECK

TYPE: Main program

PURPOSE: This program checks for errors in a file containing tow, sample,
and catch information before the data in the file is added to
the ZOOSTOR database.

MACHINE: Sigma 7

SOURCE LANGUAGE: Extended Fortran IV

PROGRAM CATEGORY: Data processor

DESCRIPTION:

When storing information in a database, it is extremely inconvenient
to encounter errors and inconsistencies in the data to be stored.
This program reads information from the files containing input data,
and checks for such errors. Only when a file has been found free of
errors should it be input to Program ZOOPUP, which will store the
information in the database.

There are two files which are required by SPLECK. The first is the
file containing Family, Genus, and Species names, called the Family-
file. The second file, called the Tow-file, contains information
about individual tows and samples, including genus and species names
of plankton collected. Each genus-species name must be identical to
a genus-species from the Family-file.

Numeric values and other fields which are checked for the different
kinds of records in the Tow-files are:

1. Tow Record

a. Year must be between 60 and 85.
b. Month, day, time, longitude, and latitude must

contain appropriate values.

2. First sample record

a. Maximum depth > minimum depth
b. Aliquot > 0

c. Volume of water > 0
d. Biomass > 0
e. Min. temp. < average temp. < max. temp.

3. Second sample record

For each of the four variables, the following check is made:

0 < minimum < average < maximum

S- 26-

4. Catch record

a. The number caught must be > 0.
b. The genus-species must exist in the Family-file.

In addition, each record is checked to be sure blanks are in the
correct locations, and that the record order is legal.

INPUT: A. Up to 200 records of a Family-file are read into-the program
through the F:l Data Control Block. The record format is
described in Section V of this report.

B. Records from a Tow-file are read through the F:2 Data Control
Block. Four kinds of data records are distinguished by T,
Si, S2, or C beginning in column 1. The record formats are
completely described in Section V of this report.

OUTPUT: Status messages and error messages are written to the printer
through the F:108 DCB. These are described under ERRORS &
DIAGNOSTICS, below.

USAGE: A. The following job set-up should be used to form a load module.

!JOB

!SET F:1 /FAMFIL
!SET F:2 /TOWFIL
!FORTRAN NS,GO

source deck of SPLECK
!LYNX $;.lJFL;.3 OVER SPLECK

B. The job set-up to run the program as a batch job should be:

!JOB
!SET F:l /famfil
!SET F:2 /towfil
!RUN (LMN,SPLECK)

C. The program can also be run on-line, by use of the following
commands:

!SET F:l /famfil
!SET F:2 /towfil
!S SPLECK

- 27 -

RESTRICTIONS:

The Family-file may contain no more than 200 records.

STORAGE REQUIREMENTS:

The program will run with a core limit of 7K.

SUBPROGRAM REQUIRED:

A. Fortran Library: ABORTSET BUFFERIN

B. Library in account 3: DATE SETBREAK COMPAR SCAN

C. Library in account lJFL (soon to be added to account 3 library):

IDEVICE

OPERATIONAL ENVIRONMENT: Uses the CP-V Operating System.

Device Function Special requirements

disk file Family-file input F:l DCB
disk file Tow-file input F:2 DCB
line printer diagnostic output F:108 DCB

PROGRAM LOGIC:

A. Initialization

1. Print program name and version
2. Check input files
3. Initialize SETBREAK and ABORTSET
4. Read genus-species names from Family-file and store

B. Process Tow-file

1. Read record and check record type
2. Check record for errors

C. Termination

1. Print summary
2. STOP

.1

-28-

TIMING: Undetermined, but fast.

ERRORS & DIAGNOSTICS:

A. The following errors will result in termination of the program.

. **FAMILY FILE NOT AVAILABLE

SET F:l WAS NOT ISSUED

2. **TOW FILE NOT AVAILABLE
SET F:2 WAS NOT ISSUED

3. "READ ERROR ON RECORD

This indicates an error in reading the tow file.

4. **FAMILY FILE TOO LONG

There may be no more than 200 records in the family file.

B. For each record from the tow-file wnich contains one or more
errors, three or more lines are printed. The first line contains
the digits 1234567890 repeated across the page, to identify
column numbers. The second line contains the record number, and
contents of the record. The third line (and additional lines if
needed) tells the kind of error detected. These messages are:

1. RECORD OUT OF ORDER

2. UNRECOGNIZED RECORD TYPE

3. BLANK CHARACTER NOT FOUND AT COLUMN

4. GENUS/SPECIES NAME NOT IN FAMILY FILE

S. A variable name and value, if the variable has an incorrect
value.

C. If a DECODE error occurs, the system will print an error message.

This is followed by a program message:

ERROR OCCURRED ON RECORD #

Sample output, including error messages of different kinds, is included.

PROGRAMMER: John F. Loud and Mary Hunt

ORIGINATOR: Peter Wiebe

DATE: November, 1979

REFERENCES: Complete documentation of ZOOSTOR database.
Reports of W.H.O.I. Sigma 7 programs.

T7~-/

29-

SAMPLE OUTPUTr FROM SPLECK:

S ~ F-)JJN 1: 1 /Q-3/79- 13:37 :47r

NUMBER OF PAMILY RCCURL)S READ: 35

12345678901234567O91234579ol23456769U12345678901234b6789012
29 C NEMATtdPACHIeN BitOp IS 1

**GLUS/SHECIES NAME NOT IN FAMILY FILE

12345678901'334567890123456789012345678901234b67690123456799012
0 57 T A271 7 MTRN 72Q924 2245 NSSN 068*28 35*16
**LbLANK CHARACTER NJOT POUND AT CLUMN 014

123456789O17345676901234567S991?3456790124b7901234567A9012
0 123 T A271 48 MIRN 720927 0445 NSSN 068027 t06923
LATITUDE a 96o2300

12345678901'.345678912346789013457O12I34bb789o1234b6789012
0 134 0 STYLeCH;IRON CARINATUM 2b
**UNRECOUiNIZED REC'RRD TYPE

1234567890I,34567890123456789o1?3456769012344678901234567B901?
0 157 Si 99 11)00 805 2 2195
MiNDEPTH - 1000
MAXDEPTH a 805

1234567890l p34567890 1234568-901-23456 '9u1 2345678901 2346-7P901-2
0 246 C EUPHAUSTA 6REVIS 3
**RECO~RD OUT OF vwnfER

123456789O1.33456789012345678901234567h9U12:34bb7d901234b6789012
0 279 C MEGANYTTPHANES NaRVEGICA I
**(iENS/S'PECIES NAME NOT IN FAMILY FILE.

**ENL) OF FJLE MN DATA WECORI) INPUT AFTER 279 RELONL)S PReCESSED

7;~ LqNR~kS DE'TECIriD

30-

NAME: PLANKINT

TYPE: Main program

PURPOSE: To find integrated plankton tows from all samples.

MACHINE: Sigma 7

SOURCE LANGUAGE: Extended Fortran IV

PROGRAM CATEGORY: Utility

DESCRIPTION:

Some kinds of plankton tows include samples from different depths.
It is desired to create an additional sample, combining data from
each depth. For each species found in the tow, the program finds the
number caught per 1000 cubic meters of water filtered, per 1000 meters
of depth. The minimum, average, and maximum values of temperature,
salinity, etc. are found, and the total biomass and volume of water
filtered are found. The depth ranges of the integrated sample are the
minimum and maximum depths of all the samples processed. The depth
code of the integrated sample is '99'. An output file is created,
containing the input file information, and the integrated samples.

INPUT:

The file containing input data is read through the F:l DCB. This
file contains four different kinds of records, distinguished by the
first four bytes of the record. The kinds of records, and record
identifiers, are:

T Tow record
Sl Required (first) sample record
S2 Optional (second) sample record
C Catch record

These records must be in the following order:

Tow record for first tow
Sample record 1 for first sample of tow
Sample record 2 for first sample of tow

Catch record for sample
Catch record for sample

Sample record 1 for second sample of tow
Sample record 2 for second sample of tow

j Catch record for sample
Catch record for sample

31 -

Tow record for second tow
Sample record I for first sample of tow
Sample record 2 for first sample of tow

Catch record for sample
Catch record for sample

The formats of the different kinds of records are given in Tables 1,
2, 3, and 4.

OUTPUT:

The output file is created through the F:2 DCB. The format is identical
to the format of the input file. The records for the integrated sample
for each tow are added at the end of the other samples for the tow.

USAGE:

The job to load and run the program could be:

!JOB
!FORTRAN LS,GO

source decks of PLANKINT and LJUST
!SET F:l /infil
!SET F:2 /outfil;OUT;SAVE
!LYNX $;.3
!RUN

where 'infil' and 'outfil' should be replaced by the names of the input

and output files respectively.

RESTRICTIONS:

1. The program does not check to be sure there are samples covering
all depths between the minimum and maximum depths.

2. The average temperature, salinity, etc. for the integrated sample
are found by averaging the minimum and maximum values of the

integrated sample.

3. The input file must not contain sample records with a depth code
of '99'.

-32-

STORAGE REQUIREMENTS: The program requires 3456 locations.

SUBPROGRAMS REQUIRED: MOVE and COMPAR from the account 3 library.
LJUST included with this program.

OPERATIONAL ENVIRONMENT:

Device Function Special requirements

Disk input F:1 DCB
Disk output F:2 DCB

ERRORS & DIAGNOSTICS:

There are two kinds of error messages. The first kind are for input-
output errors, and the second kind for problems with the input file.
All error messages result in the program being terminated.

Input/output error messages are:

1. ERROR nn IN FIRST RECORD

There was a read error of some kind in the first record.

2. OUTPUT ERROR or BUFFEROUT ERROR

A write error.

3. READ ERROR

Read error other than first record.

Error messages indicating problems with the input file are:

4. FIRST RECORD NOT TOW RECORD nnnn

The program prints the first 4 characters of the offending record.

5. NOT S1 RECORD nnnn

The record after a tow record must always be a S1 record. If not,
this message appears. Again, the first 4 characters are printed.

6. ILLEGAL RECORD TYPE AFTER S1 nnnn

The only legal record types after S1 are S2 or C.

7. ILLEGAL RECORD TYPE AFTER C nnnn

Must be record type T, Sl, or C.

- 33 .

8. DEPTH CODE 99 IN INPUT FILE

The input file must not contain a sample with a depth code
'99'.

PROGRAMM R: Mary Hunt

ORIGINATOR: Peter Wiebe

DATE: June, 1979

REFERENCES: Documentation for Wiebe Database, M. Hunt.

k I '

- 34 -

VI1. Program to Update Database

NAME: ZOOPLuP

TYPE: Main program

PURPOSE: To update the ZOOSTOR database.

MACHINE: Sigma 7

SOURCE LANGUAGE: Extended Fortran IV

PROGRAM CATEGORY- Utility

DESCRIPTION:

Program ZOOPUP is written to update the ZOOSTOR database. It is
assumed that the user has read the database description and other
related documentation. The program includes a different procedure
for each anticipated updating task. These tasks are:

1. Add Family, Genus, and Species names

2. Add Tow, Sample, and Catch information

3. Modify or delete Tow occurrences

4. Modify or delete Sample occurrences

5. Modify or delete Catch occurrences

The program includes two read subroutines, one to read Family/Genus/
Species information, and one to read Tow/Sample/Catch information.
The expected input for these routines is described under INPUT.
Data in a different format can be used by supplying a new version of
the corresponding routine. Nearly all communication between the read
routines, the main program, and the Database Management routines, is
through COMMON. A complete description of COMMON is included in this
report. A description of the individual procedures follows.

I7

- 35 -

Contents of COMfON

NAME NO. TYPE CONTENTS
WORDS

ICCB 14 INTEGER SHOULD NOT PE CHANGED BY LICER
ISETABL 36 INTEGER NOT NEEDED BY LCER PROGRAMS
IRRTABL 2 INTEGER NOT NEEDED BY UCEP PPOGPF.MS
ZOOHERD 2 INTEGER USER DOES NOT NEED THIS EITHER

TOWDATA

CRUISE I INTEGER CRUI'iSE NAME. 4 CHRPACTERS ALPHA
TOWNUM I INTEGER TOW NUMBER, 4 CHARF:CTEFS ALPHA
TOWlTYP I INTEGER TOW TYPE, 4 CHARACTERS ALPHA
FAMCODE I INTEGER FAMILY CODE, ONE BIT PER FAMILY IDENTIFIED
YEAR 1 INTEGER LAST 2 DIGITS OF YEAR OF TOW
MONTH I INTEGER MONTH NUMBER OF TOW
DAY I INTEGER DAY OF MONTH
TIME 1 INTEGER TIME OF DRY. 24-HOUrk CLOCK FORMAT
LONGTUDE I REAL LONGITUDE IN DEGREES, + FOR EAST. - FOP WEST
LATLIDE I REAL LATITLIDE IN DEGREES,7 + FOR NORTH. - FOP COLITH
REGION 1 INTEGER REGION OF TWO, 4 CHARACTERS RLFHA
NITEDAY I INTEGER DRY-NIGHT CODE, D FOR DRY, N FOR NIGHT
KURR200 2 INTEGER POINTERS USED BY DBM

:AMPLE
DEPCODE I INTEGER DEPTH CODE, '99' MEANS INTEGRATED -RMPLE
DEPTHS 2 INTEGER MINIMUM AND MAXIMUM DEPTH OF SAMPLE IN METEPR
TEMPS 3 REAL MIN., AVG., AND MRX. TEMPERRTURE OF RMPLE
SALTS 3 REAL MIN.. AVG., AND MAX. SALINITY OF SAMPLE
OXYGEN 3 PEAL MIN., AVG., AND MAX. O.:YGEN OF SAMPLE
LIGHT 3 REAL MIN., AVG., AND MAX. LIGHT OF SAMPLE
CHLPPHYL 3 REAL MIN., AVG.! AND MRX. CHLOROPHYL OF ZRMPLE
BIOMASS 1 REAL TOTAL BIOMASS OF +MPLE
ALIQUOT 1 REAL FRACTION OF SAMPLE STUDIED, 8 MERN 1/8
VOLFIL 1 REAL VOLUME OF WATEP FILTERED, IN CUBIC METERS
UNDEF 5 INTEGER ROOM FOR EXPRNSION
KURR210 2 INTEGER POINTERS USED BY DBM

CATCH
NPCUM 1 REAL NUMBER PER CUBIC METER
KURR400 1 INTEGER POINTER UIEI, BY DEM

FAMILY
FAMNAME 5 INTEGER 17-CHARPACTER FAMILY NAME
KURR300 1 INTEGER DEM POINTER

GENUS

GENAME 5 INTEGER 18-CHARACTER GENUS NAME
KLIRP310 I INTEGER DBM POINTER

SPECIES
SPENAME 4 INTEGER 16-CHAPRC:TEP SPECIES NAME

J KUPR C ':"" 2 INTEGER POINTERS USED BY DEM

IAFMAST 6 INTEGER NOT NEEDED BY USER F'FOGFFiS

- 36 -

The first procedure is used to add Family, Genus, and Species names
to the database. This procedure takes the following steps:

1. Initialize counters and pointers.

2. Call read subroutine and check status.

3. If Family name is different from previous Family, and is not
already in the database, add it to the database.

4. If Genus name is different from previous Genus, and is not
already in the database, add it to the database.

5. If Species is not already in the database, add Species name
to the database.

6. Return to step 2.

Operation will be most efficient if the species to be added are
already sorted by Family name and Genus name.

The next procedure is used to add tow data, sample data, and catch

data. This procedure takes the following steps:

1. Initialize pointers and counters.

2. Call read subroutine and check status.

3. If cruise or tow number is different from that of the previous
tow, and there is no tow occurrence with that cruise and tow

number, add the tow occurrence to the database.

4. If the depth code of the current sample is different from the
depth code of the previous sample, or the tow is not the same
as the previous tow, the program checks to see if the specified

tow already has a sample with the specified depth code. If not,
the sample occurrence is added to the database. If such a
sample already exists, a message is printed, and processing

continues.

5. If the first 4 characters of the Genus name are blank, returns

to step 2.

6. Checks to see if the sample already has a catch occurrence of
the specified Genus-Species. If such an occurrence already
exists, a message is printed, and the program returns to step 2.

7. If the specified Genus/Species is not in the database, prints a
message, and returns to step 2.

8. Stores catch occurrence, linked to sample occurrence and Genus-
Species occurrence.

9. Returns to step 2.

_i -7

- 37 -

The primary purpose of this procedure is to add Tow, Sample, and
Catch occurrences in the same job. The same results can be obtained
by adding the Tow and Sample occurrences in one job, and adding the
Catch occurrences later. If this method is used, a message will he
printed for each sample, indicating that the occurrence already exists
in the database, but the program will continue processing. It should
be noted that the Family, Genus, and Species occurrences must already
exist in the database.

The last three procedures are used to modify or delete Tow, Sample,
or Catch occurrences. It is to be hoped that the use of these
procedures will be kept to a minimum by careful checking of input
before adding information to the database. The first of these
procedures is used to modify (or delete) tow occurrences. Since a
tow is identified by cruise and tow number, these two fields cannot
be changed. This procedure takes the following steps:

1. Initialize pointers and counters.

2. Call read subroutine and check status.

3. Access tow occurrence with specified cruise and tow number.

4. Modify occurrence by replacing all fields with contents of
corresponding COMMON locations. (Or delete occurrence.)

5. Return to step 2.

The next procedure is used to modify (or delete) samples. Since
samples are identified by depth code, this field cannot be changed.
In addition to sample information, the read subroutine must specify
cruise and tow number, to identify the tow to which the sample
belongs. The procedure takes the following steps:

1. Initialize pointers and counters.

2. Call read routine and check status.

3. If cruise and tow number are different from those of the
previous tow, access the specified tow occurrence.

4. Find the sample occurrence with the specified depth code.

5. Modify the sample occurrence by replacing all fields with the
contents of the corresponding COMMON locations. (Or delete
occurrence.)

6. Return to step 2.

I

- 38 -

The last procedure is used to modify (or delete) catch occurrences.
To properly identify the occurrence to be modified, the read sub-
routine must input the cruise and tow number of the tow, depth code
of the sample, and Genus and Species names, in addition to the
correct catch information. The steps taken are:

1. Initialize counters and pointers.

2. Call read subroutine and check status.

3. If cruise and tow number are different from those of the
previous tow, access the specified tow occurrence.

4. Find sample occurrence with the specified depth code.

5. Access the catch occurrences from the sample one by one
until we reach the catch occurrence of the specified Genus

and Species.

6. Modify the catch occurrence by replacing all fields with
the contents of the corresponding COMMON locations. (Or
delete occurrence.)

7. Return to step 2.

There is no substitute for careful checking and rechecking before
adding information to the database. If a tow occurrence is deleted,
all sample occurrences for the tow are deleted also. If a sample
occurrence is deleted, all catch occurrences for the sample are
deleted. When a catch occurrence is deleted, the linkage for each
species occurrence must be changed. All this is done by the Data
Base Management routines, but shows that deletions are not
recommended. Again, careful checking is necessary to avoid these
time-consuming procedures.

(i

- 39 -

INPUT:

A. Cards through F:105

One record is read from logical unit 105 for each procedure
requested by the user. The record contains one or two keywords
to identify the desired procedure, as follows:

cols. codes procedure

1-3 FAM Add Family, Genus, and Species names

1-3 TOW Add Tow, Sample, and Catch occurrences

MOD TOW Modify already existing Tow,
1-7 MOD SAM Sample, or

MOD CAT Catch occurrences

DEL TOW Delete existing Tow,
1-7 DEL SAM Sample, or

DEL CAT Catch occurrences

1-3 END No more procedures

B. Family, Genus, and Species names through F:l

Input for the FAM procedure is done by Subroutine READSPEC.
This routine expects one record for each species to be added

to the database. These records should be presorted by Family
and Genus. The format is:

cols. Contents

1-17 Family name

21-38 Genus name

41-56 Species name

C. Tow, Sample, and Catch information through F:2

Input for all procedures except FAM is done by Subroutine
READTOW. The amount of input needed depends on the procedure,
but the format of the file is the same in any case.

This file is described in attached documentation, Section V.

D. Subschema file F:SSCH DCB

The user does not need to do anything about this, except include

a SET command in his job.

E. Database F:DB01 DCB

The usur must include a SET command in the job.

-40-

OUTPUT: A. At the conclusion of each procedure, the number of
occurrences of each group added, mooified, or deleted, is
output on the printer. Error messages may also be printed.
See ERRORS & DIAGNOSTICS, below.

B. The information supplied by the user is stored in the
database.

USAGE: The job file below will take the following steps:

1. Compile ZOOPUP and associated subroutines from cards and
create a load module named ZOOPUP.

2. It will add occurrences to the Family, Genus, and Species
groups. Records containing the information are read
through logical unit 1, which is assigned to file FAMFILE.

3. It will add occurrences to the Tow, Sample, and Catch
groups. The required information is read through logical
unit 2, which is assigned to file TOWCATFIL.

!JOB
!LIMIT (CORE,20), (TIME,3)
!SET F:DB01 /ZOOSTOR
!SET F:SSCH /ZOOPLAN
!SET F:l /FAMFILE;IN
!SET F:2 /TOWCATFIL;IN

* !FORTRAN GO,NS
* source of ZOOPUP and subroutines
* !LYNX $,DCBl.DMSLIB;.DMSLIB;.3 OVER ZOOPUP

!RUN (LMN,ZOOPUP)
!DATA
FAM
TOW
END

* When ZOOPUP is loaded, delete these.

RESTRICTIONS:

1. Cruise name and tow number of tow occurrences cannot be
changed. Depth code of sample occurrences cannot be changed.

2. Family, Genus, and Species must be added before Tow, Sample,
and Catch occurrences.

STORAGE REQUIREMENTS:

The load module requires 16,896 locations, but additional core

is required at run-time. The program will run in 20K.

L7:7

- 41

SUBPROGRAMS REQUIRED:

A. The following have been written as part of the program:

FAMADD To add Family, Genus, and Species occurrences
TOWADD To add Tow, Sample, and Catch occurrences
FIXIT To modify or delete already existing Tow, Sample,

or Catch occurrences
READSPEC To read the Family/Genus/Species file
READTOW To read the Tow/Sample/Catch file
LJUST To left-justify an alpha field within a word.

B. The following are from the Data Base Manager:

OPENUPD STORE SETERR FINDG FINDN GET CLOSEDB
HEAD FINDD MODIFY DELETE

C. The following are from the IPC library in account 3:

ABORT COMPAR MOVE

OPERATIONAL ENVIRONMENT:

Device Function Special requirements

card reader control input F:105 DCB
disk file data input F:l DCB;IN
disk file data input F:2 DCB;IN
Subschema file information input F:SSCH DCB
Database file data input/output F:DB01 DCB
line printer output F:108 DCB

TIMING:

The following runs were done on a database of 100 pages, rather
than 1000. This should probably not make much difference in the
time.

1. Time to add 34 species records was .028 minutes.

2. Time to add 197 catch occurrences, from 3 tows and 27 samples,
was .35 minutes.

j

- 42 -

ERRORS , DIAGNOSTICS:

A. The first two error messages are produced by the main program,
and will result in termination of the program.

1. UNKNOWN PROCEDURE

The program did not recognize the procedure requested.

2. HEADER ERROR CODE =

An error condition was returned by the DBM. The error code
is printed.

B. The following messages are output by one of the read routines.
The name of the subroutine is always printed. They will result
in the termination of the current procedure.

3. SUBR. READSPEC ERROR IN READING FAMILY FILE

4. SUBR. REATOW ERROR IN READING TOW FILE

S. SUBR. READTOW FILE OUT OF ORDER
HOWMUCH =

LAST =

CURRENT =

The output values are for debugging purposes.

C. The final three messages indicate an unexpected condition in the
database. The name of the subroutine is included as part of the
message.

6. NON-EXISTENT GROUP OCCURRENCE

This message is followed by identification of the group
occurrence which cannot be located. In most cases, the
current procedure will continue.

7. ERROR error code IN subroutine name group name

This message indicates that an error condition was found by
one of the DBM subroutines. The DBM error code, name of the
subroutine, and the group in which the error occurred, are
part of the error message. In most cases, the current
procedure will be terminated.

8. GROUP OCCURRENCE ALREADY IN DATABASE

This message is followed by identification of the group
occurrence which is duplicated. The current procedure
will continue.

43

- 43 -

PROGRAMMER: Mary Hunt

ORIGINATOR: Peter Wiebe

DATE: October, 1979

REFERENCES: Xerox Extended Data Management System Reference Manual.

I

I

- 44 -

VIII. Interactive Database Processor (IDP)

Most information retrieval can be done by the Interactive Database

Processor, hereafter called IDP. This processor can be used either to

print reports directly or to store retrieved information in a file for

further processing. IDP is fairly flexible, easy to use, and well-documented.

It requires 12K of core, and can be run either in batch or on-line. To use

IDP, it is necessary to be familiar with the database structure and item-

names, which are included in Section II of this report.

If IDP is used to store retrieved information in a file, it is

recommended that the NON-REPORT option not be used. After the retrieval has

been completed, use EDIT to eliminate column headings, and to determine the

format of the records. The NON-REPORT option causes all items which are

binary or floating-point to be stored in binary format, which might cause

trouble with some application programs.

A word of caution about using IDP - be sure to give the search a place

to start. If you don't, it will take much longer than it should. It may

help to know that group ZOOHEAD is stored on page 1, line 1. If no other

starting place is given or implied, include (in the DISPLAY command) the

phrase DIRECT ON ZOOHEAD (0001,01). If you get the message 'UNABLE TO

OPTIMIZE', hit BREAK and start over, giving more information.

Ll

IDP VERSION B02
:QILIERY ZDOOPLFtM. 9-8'J FREH=ZOD11IOR.,910.
:DIISPLFy' CRULS*Eq 1DI1INJM, TOl1YP. DEPCODE!. BIDMRSS
:14HEN CRUISE EQI '06.5' ArID DEPCDDE El? '99'
:DIRECT ON ZOOHERD .O0j01RI).

CRUISE TOWNUM TOWTYP DEPCODE BIOMfiss

K065 76 MDC1 99 +8.6100000E+02
K.065 75 MOCi 99 +5.4400000jE+02
K 065 7:3 MOCd 99 + I. 210 01) OE+f:3

le,065 72 ocl 99 +8.8700(000E+02
K065 71 MDcI 99 +q.q700600E+02
K065 70 mDci 99: +7.550000(iE+02
K 065 69 MDC 9ol 9 +9.5500000OE+02
10(65 67 MDC 1 99 +b. 37r0000,E*'j2

K05 6 MDC1 9 +5.:32'(0000E+02
KrJ65 65 MDCI 99 +5. 1800000E+02
K 065 64 MDCI 99+5.4000000E+02
K065 63 MDCI +1. 1330000E+03
K065 62 MDCI 99 +1.22100@Oi~E+03
K 065 ?61) MDCI 99C +,6.7:3000'J6E+j2
K065 60 MOCi 99 +4. 9900000jE+02

:SORT '3ENIAME, SPENFIME.
:tIPLF4Y FFtMhFtMET GEMFIMEF :&PEMRFME
:WHENj FFtMNF4ME EQ 'EUPHf4US IDS'.

SO0RT YERSIOM F03WHOI JUN 4 79
SEQUENTIAL
RECORDS IN 10U14 AMEMT: 76
NUJMBER OF MERGE BUFFERS: 12
INTERMEDIFTE BUFFER SIZE: 512
RECORDS INPUT: 34

RECORDS OUTPUT: 34

EUPI4FUSIDS BEEUPHH~ f RPDBtiI
EUPI4A4JS IDS EUPH*JS I F MERI CFif
EUPHR$US IDS EUPHF9USIF BPEUDI BB
EUPHAIJSI DS EUPHAIJSIR TENERAIDE
EUPWKfUIJSDS E&AflYCTI*I E HMRGIBBFI
EUPHRUS IDS EJPDBRir1F+ KR BOHMII
EUPHAIJS I DS EMRTOBRRNI Ft FLEX 1 P1E
EUPHfNJS lS EPHTOBRN O PSESI OSU
EUPHF:tI I DS IEMFTUS IS TLMEAC
EUPHA4JSIDS ME&MYTSCE ES MOE*LOP

EUPHAUS IDS NEMHIOSCELIS MROPS C

EUPHA4JSlDS MEMRTlDSCELIS TEMELLA
EUPHfUSIDS STYLOCHEIPOM A4BIREVIFITUM
EUPHAUSIDS STYLOCHEIRON FF FINE

-46-

:Ij~3P~s F'r $ME IPCULMY CRIJ1SEi 1OWNMIJ
:WHENI GEM$AFE EQ 'r1EMAiTDBIRA1CH1D1' AN1D DEPCODE EG Q 9-.

SPENAI E TiPCUM URUISE TOWrIUM

BOOPZS +1.8q999999E-0l Emil 95
E'OOPJ I s 1. 1 OA001E-01. ENII 91r
BOOPIS +1.8oo0oo(E-0l Emil 87
BOOPIS +2-.50OiruOE-01 Emil 8
BOOPIS +1.99499998E-01 Emill 85
BOOPIS +1.80100000E-o1 Emil 84
BOOPIS +-2.0999997E-01 EM1l 83
BOOPIS +2.6999<498E-01 Erill 982
BOOPIS + 1 .991998 E - 0 Emil 81
BOOPIS +1.8999999E-01 SU~IA S
BOOPIS +3.50r00002E-01 SUw I I .
BOOP IS +3. 9999997 E- 0 1 K 035 006
BOOPIS +1. 09,0000IE+oo F+1 0 1 0'16
BOOPIS +1.1700000'E+00 F1101 015
BOOPZS +4.6300001L+00r Fit 0 014
DOOPIS +1.5600004E+0u0 A101. 013
BOOPIS *J''47-1 FloI (12
BODPI s +3.999998E-0I H$I61 Oil
BOOPIS b3t0 0 0 0 fIE - 01 1 1 O! 'J0
BOOPIS +3-i2999?98E-01 F101 009
BOOPIS +4.399999?E-0l 0007 00
BOOPIS +l.64*9,9996E+00 R1085 004
B00P1I. +7.7999 -97E-01 K~062 58
BODPIS +2.2000002E-01 I"0. 62 57
BOOPIS +'2.40000COE-01. K065 71
BIJDPIS +l.9999,98E-0l K('65 66
1BOOPIS +15. 1 99'498E-01 K'r065 64
POOI~S +1.0000000E+00j 1038 6
BOOPIS +2. (0000006E+00 (0:38 I
BOOPIS +1.0000000E+00u Ft-71 2
BEOPIS +1.000E+i R1271 1FBD30PIS +i.OOOOOOOE+00 F1271
BOOPIS +:.i8999998E-01 K062 48

BOOPIS +.506O00!E-0f 02 4
BOOPTS +1i-.60000(12E-02 03 4

BOOPIS +5.,4999998E-02 K053 31
BOOPIS +7.c9000002E-01 £125 005
BOOPIS +2.6999998E-01 C125 ill
BOOPTS +2.659 1998E-vi C125 OCwe
1400P15 +2.9000002E-01 C125 0)13
FLEMiPIES +1.S000000E-01 Emil 87
FLEXIPIES -- 8999998E-01 K(035 005
FLEXIPIES +-0000001OOE-01 FAl 01 00.5
FLEXIPIES +2.520000r4E+00o Cili 007V
F'EXIPIES +1.81999%-E+00 CiII 020
FLEXIPIES +7.60000j3E+a0 CIll 013
FLEXIPIES +2.5299997E+00 CiII (010
FLEXIPIES 4 3.89959998E-01 K(065 72
FLEXIPIES +3.799999?9E-01 1.065 71
FLEXIFIES +9..8000001E-01 1(.065_ 70

47 -

IX. Applications Programs

As an alternative to IDP, two subroutines have been written which can

be incorporated in user applications programs. Their use will allow direct

access to the database, but will add to the core requirements of the programs.

These routines act as an interface between user programs and the Database

Management routines. These will only access the data; they cannot be used

to create or update the database. One of these routines accesses the data-

base by Families, and the other accesses the database by Tows. Nearly all

communication between the user programs, the access routines, and the Data

Base Management routines is through COMMON. The contents and arrangement

of COMMON are determined by the File Definition Processor, and must be

exactly as specified. A complete description is included in this report.

With the exceptions noted in the following descriptions (in GETFAM and

GETTOW), the user program should change nothing in COMMON.

Each of the two routines has four entry points. In both cases, the

first entry point is an initialization call. Although these routines are

designed so that only one of them will be needed for most applications, both

may be used in a single program, with the following restrictions:

1. Only one of the initialization calls may be made.

2. Calls to the two routines must not be alternated. Processing in

one direction should be completed before starting to process in

the other direction.

A brief demonstration program using FAMINIT is included. For each

species, it prints tow and sample information associated with each catch

occurrence. The first page of output is also included.

i

- 48 -

NAME: TOWINIT

TYPE: Subroutine

PURPOSE: To provide a method for Fortran programs to access the ZOOSTOR
database by tow and sample number.

MACHINE: Sigma 7

SOURCE LANGUAGE: Extended Fortran IV

PROGRAM CATEGORY: Input

DESCRIPTION:

This routine was written to allow applications programs to access
information stored in the ZOOSTOR database, without having to use
the Data Base Manager directly. Nearly all communication between
user programs, this access routine, and the Data Base Management
routines is through COMMON. In particular, information retrieved
from the database is always stored in COMMON. The contents and
arrangement of COMMON are determined by the File Definition
Processor, and must be exactly as specified. A complete description
is included with this report. With the exceptions noted in the
description (in GETTOW), the user program should change nothing in
COMMON.

This routine has four entry points, the first of which is an
initialization call. All the entry points include an error
indicator, INKERR, as an argument. This indicator has the same
meaning in all cases:

INKERR = 0 The requested operation was successfully
completed.

INKERR = -l The end of the set being processed has
been found. This is not usually an error
condition. It cannot occur in an
initialization call.

INKERR > 0 An error has occurred which makes it

impossible to continue. The value of
INKERR will be one of the error codes
set by the Data Base Manager. If the

user program makes another call to the
access routine after an error condition
has been encountered, the job will be
aborted.I

ia

- 49 -

INPUT: The input items requested by individual calls are stored in the
corresponding locations of COMMON. See the description of
COMMON included in this report.

OUTPUT: None.

USAGE:

A. As mentioned above, this routine has four entry points. The
first entry point is an initialization call, which must be made
once and only once, before any of the other entry points are
called. It will open the database and do other needed
initialization. The form of this call is:

CALL TOWINIT (NPAGE,INKERR)

where

NPAGE is an integer location into which the calling program
must store the number of pages to be used as buffers
by the Data Base Manager. The value must be between
3 and 10.

INKERR is an integer location into which the routine will
store the results of the operation, as described above.

B. The next entry point is used to access a tow. It can be used in
one of two ways: either to access a specific tow, or to access
the next tow. To access the next tow, the calling program must
set METHOD to one; the routine will store the retrieved tow
information in the corresponding locations in COMMON. To access
a specific tow, the calling program must store the cruise name
and tow number in the corresponding locations in COMMON and set

METHOD to zero before calling GETTOW. The form of the call is:

GETTOW (METHOD,INKERR)

where

METHOD is an integer location into which the calling program
must store either zero or one:
= 0 to retrieve a specific tow
= 1 to retrieve next tow

INKERR is an integer location into which the routine will

store the results of the operation, as described
above.

I

- 50 -

C. The next call should be made to access the next Sample from
the current Tow. When all samples for the tow have been
retrieved, INKERR will be set to -1. Retrieved sample
information will be stored in the corresponding locations of
COMMON. The form of this call is:

CALL GETSAMP (INKERR)

where

INKERR is an integer location into which the routine will
store the results of the operation, as described
above.

D. The last entry point of this routine is used to retrieve the
next catch occurrence for the current sample. The calling
program can specify how much, if any, information is desired
in addition to the catch data. All retrieved data are stored
by this routine in the corresponding locations in COMMON.
The form of this call is:

CALL NECATCH (HOWMUCH,INKERR)

where

HOWMUCH is an integer location into which the calling program

must store a value to indicate how much information
is desired:
= 0 will access only catch information

= 1 will also retrieve Genus and Species names
= 2 will retrieve Family name in addition to

Genus and Species names.

INKERR is an integer location into which the routine will
store the results of the operation, as described
above.

E. Other Considerations

1. The job to access the database must include the following

SET commands:

!SET F:DBOl /ZOOSTOR
!SET F:SSCH /ZOOPLAN

2. When the application program has completed its operation,
it should close the database, as follows:

CALL CLOSEDB

I

- 51 -

3. The Load command for the application program must include
the following:

File DCB1 in account DMSLIB
Library in account DMSLIB

To load from the GO file, the LYNX command might be:

!LYNX $,DCBI.DMSLIB;.DMSLIB;.3

RESTRICTIONS:

1. If the other retrieval routine, FAMINIT, is to be used in the
same program, the following restrictions must be observed:

a. Only one of the initialization calls may be made.

b. Calls to the two routines must not be alternated.
Processing in one direction should be completed
before starting to process in the other direction.

2. The entry points are heirarchical. This means that a call to
GETSAMP cannot be made before a call to GETTOW, and a call to
NECATCH cannot be made before a call to GETSAMP.

3. The calling program should check the indicator after every call.

STORAGE REQUIREMENTS:

Subroutine TOWINIT requires 135 locations. This does not include
locations needed by the Data Base Management routines.

SUBPROGRAMS REQUIRED:

The following routines are needed from the library in account DMSLIB:

FINDD FINDG FINDN GET HEAD OPENRET SETERR

OPERATIONAL ENVIRONMENT:

Device Function Special requirements

Subschema file ZOOPLAN input F:SSCH DCB
Database file ZOOSTOR input F:DBOl DCB

I

52-

PROGRAMMER: Mary Hunt

ORIGINATOR: Peter Wiebe

DATE: January, 1979

REFERENCES: Xerox Extended Data Management System Reference Manual.

011

- 53 -

NAME: FAMINIT

TYPE: Subroutine

PURPOSE: To provide a method for Fortran programs to access the ZOOSTOR
database by Family and Genus.

MACHINE: Sigma 7

SOURCE LANGUAGE: Extended Fortran IV

PROGRAM CATEGORY: Input

DESCRIPTION:

This routine was written to allow applications programs to access
information stored in the ZOOSTOR database, without having to use
the Data Base Manager directly. Nearly all communication between
user programs, this access routine, and the Data Base Management
routines is through COMMON. In particular, information retrieved
from the database is always stored in COMMON. The contents and
arrangement of COMMON are determined by the File Definition
Processor, and must be exactly as specified. A complete description
is included with this report. With the exceptions note in the
description (in GETFAM), the user program should change nothing in
COMMON.

This routine has four entry points, the first of which is an
initialization call. All the entry points include an error
indicator, INKERR, as an argument. This indicator has the same
meaning in all cases:

INKERR = 0 The requested operation was successfully
completed.

INKERR = -1 The end of the set being processed has been found.
This is not usually an error condition. It cannot
occur in an initialization call.

INKERR > 0 An error has occurred which makes it impossible

to continue. The value of INKERR will be one of
the error codes set by the Data Base Manager.
If the user program makes another call to the
access routine after an error condition has been
encountered, the job will be aborted.

INPUT: The input items requested by individual calls are stored in the
corresponding locations of COMMON. See the description of COMMON
included in this report.

45
- 54 -

OUTPUT: None.

USAGE:

A. As mentioned above, this routine has four entry points. The
first entry point is an initialization call, which must be
made once and only once, before any of the other entry pointsr
are called. It will open the database and do other needed
initialization. The form of this call is:

CALL FAMINIT (NPAGE,INKERR)

where

NPAGE is an integer location into which the calling program
must store the number of pages to be used as buffers
by the Data Base Manager. The value must be between
3 and 10.

INKERR is an integer location into which the routine will
store the results of the operation, as described above.

B. The next entry point is used to access a family. It can be used
in one of two ways: either to access a specific family, or to
access the next family. To access the next family, the calling
program must set METHOD to one; the routine will store the name
of the retrieved family in array FAMNAME in COMMON. To access
a specific family, the calling program must store the Family
name in array FAMNAME in COMMON and set METHOD to zero before
calling GETFAM. The form of the call is:

CALL GETFAM (METOD,INKERR)

where

METHOD is an integer location into which the calling program
must store either zero or one:
= 0 to retrieve a specific family
= 1 to retrieve next family

INKERR is an integer location intowhich the routine will
store the results of the operation, as described above.

I

- 55 -

C. The next call should be made to access the next Genus-Species
in the current Family. The first time this call is made for
a given Famnily, it will retrieve the first Genus in the Family,
and the first Species for that Genus. Subsequent calls will
retrieve the next Species for the same Genus until all Species
in the Genus have been retrieved. It will then retrieve the
first Species from the next Genus. When all Species from the
Family have been retrieved, INKERR will be set to -1. Names
of the retrieved Genus and Species will be stored in arrays
GENAME and SPENAME in COMMON. The form of the call is:

CALL GETSPEC (INKERR)

where

INKERR is an integer location into which the routine will
store the results of the operation, as described above.

D. The last entry point of this routine is used to retrieve the
next catch occurrence for the current Species. The calling
program can specify how much, if any, information is desired
in addition to the catch data. All retrieved data are stored
by this routine in the corresponding locations in COMMON.
The form of this call is:

CALL GETCATCH (HOWMUCH,INKERR)

where

HOWMUCH is an integer location into which the calling program
must store a value to indicate how much information
is desired.
= 0 will access only catch information
= 1 will also retrieve Sample which is the owner

of the catch occurrence
= 2 will retrieve Tow information in addition to

Sample information.

INKERR is an integer location into which the routine will
store the results of the operation, as described
above.

E. Other Considerations

1. The job to access the database must include he following
SET commands:

!SET F:DB01 /ZOOSTOR
!SET F:SSCH /ZOOPLAN

2. mn the application program has completed its operation,
.t should close the database: CALL CLOSEDB
This routine has no arguments.

- 56 -

3. The Load command for the application program must include
the fullowing:

File DCBl in account DMSLIB

Library in account DMSLIB

To load from the GO file, the LYNX command might be:

!LYNX $,DCB1.DMSLIB;.DMSLIB;.3

RESTRICTIONS:

1. If the other retrieval routine, TOWINIT, is to be used in the
same program, the following restrictions must be observed:

a. Only one of the initialization calls may be made.
b. Calls to the two routines must not be alternated.

Processing in one direction should be completed
before starting to process in the other direction.

2. The entry points are heirarchical. This means that a call to
GETSPEC cannot be made before a call to GETFAM, and a call to
GETCATCH cannot be made before a call to GETSPEC.

3. The calling program should check the indicator after every
call.

STORAGE REQUIREMENTS:

Subroutine FAMINIT requires 146 locations. This does not include
the locations needed by the Data Base Management routines.

SUBPROGRAMS REQUIRED:

The following routines are needed from the library in account DMSLIB:

FINDD FINDG FINDN GET HEAD OPENRET SETERR

OPERATIONAL ENVIRONMENT:

Device Function Special requirements

Subschema file ZOOPLAN input F:SSCH DCB
Database file ZOOSTOR input F:DBOl DCB

.1.

r
S7--

PROGRAMMER: Mary Hunt

ORIGINATOR: Peter Wiebe

DATE: January, 1979

REFERENCES: Xerox Extended Data Management System Reference Manual.

7!

.1

I* c PROGRAM Tl TEST FAMINIT

5o C

6o C.____V CMMeN TO bE USED BY P'tfGKArlS WHICM ALCESS ___~

7.v 710STBq DATAUASE

-9----- .CMM()N ICCb(14) - _____

10* !ITEGLR 9;7C!JLF., PA(.lF-Nd, LINe, F'REF
211 INTEGER LAWVY, U(n5N~lj ENI(LeUE, ERRNd

12*--- -- 1 TEGLR FRREF. P'ASS WD(2) A IEAN __

13. EmUIVALENCE (IC t(1),REFCbU~j. (IC~bVd)jPAGENd)
14m ErnUIVALENCE (ICC6(4)sLINd)* CICCb(5)#FRFF)
15. ---- E'UI VALENCE (ICC (6)jLARE),o (LU(7)U5PNV).~_ _

17. Ev311VALENCE (ICCB(jO),ERRFJ)# (ICCbC11)#PASSWD)
UIAEC (ICCB1 3) 1AREAN.- -________

19. C
20. C SET TABI.SES
-21.e- rC,
22. CAMMON !SETABL(36)
a3. INTEGER TOWSETC5)o SAMSET(5)o FAMSET(b)
-24o IJNTEGLR -GENUSETL-S-ft-L-CSET1-5I,-SRFCAI(3)
?50 INTEGER SAMCAT(5)
26. EnULIVALENCE (ISETABL(j)AT~w8ET)i (ISETABL(6)*SAmSET)
27. £D----EUI VALENCE CST~.J~FM$T)--.L~3Ll6&3NST---.

ageEnI'UVALENCE (ISETABL.4?fl.SwEL5ET)p (ISETABL(26),SPECAT)
a EInUIVALENCE (ISETABL.C31)aSAMCAT)

316 COMMON IARTABL(2)
32. C L

-339 C- HEADER(RU__ ___-

C5 CPMMON ZO"HEAD(P)
-36INTEGER KURW 00 -- -_________________

37. ErnUIVALENCE (ZeOHEAD(1)#K~mfl~1O)
38. c
-399.- ___COlAAGRlUP
40. c
410 COMMON TeWDATA(14)
-42 INJTEGER. CPVlSE,_T_0NViljT~twTYI

4o INTEGLR YEAR*, MUNTM, DAY. TIME
459 _____RVA. 1LeNUTUDEs LATUDE __ ____________

4160 INTEGL.R PEUION# NITEDAYp KUR200
47v EOUIVALENCE (TeOATA()#CRUISE)j tTt1WDATA(2),T5WNUM)
48v __ .E!fUIVALENCE (T4DTA()ITITtp_(OWA 4,Fm5E__.
49. EnUIVALENCL (Te DATA(b)pYtAII)a (TVdL3ATA(6),MeNTIW)
50. Ef3UIVALENCE (T~wDATA(7).DAY)o (TODATA(8) ,TIME)

j5 .1,..I3UIV LENCE __TW TA(-jLNTUF TWDT(1)1LA
52. (rnUIVALENCE (TewOATA(1jljftHLI0N)A (Te0w0ATA(j2)#NITE0AY)
53s EnI3UVALENCE (TDATA(j3)'KVNR200)

5r C SAMOLE OROUP

Cl!MMON SAMPL.E28)
580INTEGERDEI'COUEsDER'THS(2)

r60. RtAL L.!CI.T(3)* CHLRt'NYL(3)o D WS
61. RZAL AL!QUdTa VPJLFIL.
6?- -- .XkTEGL.R UNDEF(5), KURH21O-
6. EnLJ1VALENC. (AMPLEdt)POEWLVDE)p (SAMI'LF(2)#DEPTHS)
64. El OEC (SAmPLEC(a)#TEM?'S), (SAmWL(7)SALTS)
65@ ---.. E!UIVALENCL (SAmPLE(10)#atXYLLN2, (SAVlLE(13)#LO4T)
669 EILIVALENCE (SA"iPLE(j6)#CH~L.qPHYL)# (SAMPLE(19)#819MASS)
67. En'UZVALP CL. (SAmPLE(?0)jALlaUlr)p (SM (1)VrL
68a - -EtU I VALE NCL CSAmPLE(22a UNL)~~LF~_SAMPL.E(27) hKURR210)-
69. C
70o C CAT"'. GR5UP

-71v -___
72. CRMMON CATCH(E)
739 RVAL NPCUM

_______-INTEG.R KUIRR4CO____-_ ___- -

75o EnUIVALENCE (CATCH(J)pNWCUMI~, (CATCH(2)jI(URR400)
76. C

-77 - - AAT Y R U -
78. C
79. CA'MeN FAMILY(6)
-80 ,0ATEGER. FAMNAME(5)UR 30Q-_
81. EF'UIVALENCL. (FAMILY(I)#FAMNAME), (FAMILY(6)AKURR300)
82. C
83. 4 C- __E US. R 0V P
84. C
85. CAMMeN CENVS(6)

_____ZW-lTE.R GENAME(5)l KV'iW3lO - _ - -_

8PEnUIVALENCE ((UENUS(1)a(2ENArM.)i cIUENUS(6)OKURR31O)

8&! C -EEGFUP

900 C
91. CMeN SPECTES(6)
9 2 __ __ J'TEGER SPL.NAME(4), KUR4320 ___

930 ErnUIVALENCE (SPEClES(l)aSIWLNAME)* (bPECIES(S).,(URR320)-_
9A4. C

9S~C. AREAATER __________________________

96. C
97. CAMMON IARMAST(6)

99. 0.*~
1000 C
11. l C_ _ __ _

102. C L&CAL VARIA0LES
103. C
104 I IT TEER NPAGE#__!NKERRt, METHOD
1050 IkITEGLR HeWMUCH# NSTA
106. R'AL NUMTOT
107. _____IN3TEGLR 18LNK/'__I __________________

108. I'JTEGL.R LP/108/
109. C
110. e-_ C -SE T_-P AN AME TER.S_ A Np__MAKE______

J111. C INITIALIZATION CAL4.
112. C
113. - _ NaA ci--NP * #_ _ __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

III NQTA q 0*1l~ MWTHeL) 0
116. _0MC 2______________
117. CALL FAMINIT NPAGE, INKEK4
118. 1S INI(ERR sNE. 0 allTUT INKIERR i STeP 100

-60-

20s STORE FAMILY NAME IN COMMON

C1 AND HETIE1VE FAMILY

2 FAMNAIF(1) aWUP

2'ao FAMNAME(2) 40.AUSI

25s -- _____FkMNAI1L3) q2HUS ____

26o FAMWNAME(4) a AMNAkE(b) *IbL.NK
27o CALL (.ETFAM M LETkH5) INL',

28.- !"~--INKERIR eNE* 0-) - OUT 'UT- INK(ERR i T5-00- --
29. C
30. C SPkLQILS L.U'P STARTS HERE

32. 20 CONTINUE
33e CALL UETSPEC C INKERR
34*--Ir (-INKFRR sLT. 0) 2 10 70_ _-_ _ _ _ _

35. IV INKER'4 #NE* 0) OUTWLUr INKcERR STOP 300
36e NIJMTOT * 0
37o------- R~ITE (LP,2000)-
38. 2000 FARMAT(/)
39. WQ!TECLPoI000) FAM NAME, U.iLNAMEs S1'ENAME

.41. Nq1'A a 0
.42.

___ __ __ __ ___010___ THR Siw-rAT !CC-R-RE. ES-- __-

.4*. C IFIR THIS Sw'ECIES

.45. C
44 -30-VINTINUE__

.47o CALL. UETCATCH CHeWMUCM, INPEWR
IV C IN'(ERR o6T. 0 UOC TO 2U

4! 0 ?F.4 NKERR mNE-to)DU1W I EEiS-.-0
'50o C
519 C ENO) OF CU.RRENT SPECIES

:53, 50 CONTINUE
L54o WQITLPsI010) CRUISE, TOWTYPs TeWNUM, YEAR# MONTH* DAY
L5s--11-FkMT CIXo3A4,--3X# I2j '/-, 12,p
L56. WR!TECLPP1020) DEPCeDEo L)-WTHSP TEMPS
L579 1020 FARMAT(3X#A4# 218a 3FS02
L58a OR~ TO 30O
159. c
160. C HAVE FINISHED THIS FAMILY, Se...
L 61' STOPo
162. C
163o 70 CONTINUE

1659 STOP
166. END

-61-

Output from Demonstration Program

ELJPHA JS Ih T Y VI WID fA VNiCTI4
K062bi -1- 6/111J~_ _ _ ____

99 1 1000 go,' 14.2 or
K062M1aC150 76/1.3/ 7 1*C

4 4t 17-eZiL 25-18AUo

LEP-AVSI LOs -H sAN'i K JsI[4
KO62m&Cj4b, 76/i2/

99 1 io~o 5 9oro 12o7o 2o*93o
Kn6PmRCI 49 /6/12/ 4 ____

b 3.:0 400 13.25 14.00 14.75

EUPHAUSIL)S THYSAN'WIPBA VqIENTAL.IS

EUPHAUSIDS THYSANIPbDA PECTINATA

EUPHAUSIDS THYSAN1PtDA T1 ICUSP'IOATA

EUPHAUSID5 THYSANtjESSA UqLUARIA
K(O62Mt4Cjb0 76/1 :/ 7

KO82mtIC150 76/1?/ 7

1 too 20-35 2C035 20*35
K062M~lCI47 76/ip b_______________

991 iooo 5000 i.7() Roso
K062MIJ-.147 76/ip/ 5

I 10 20. Pn35 20035 20.35
K062meC147 76/42/ 5

3 550 700 7 -90 89bQ 9*50
Kpf62Me3C1A+L 76 1:)/ 5
2 7oo 850 5.75 6.25 /.50

K0b2MOSLC145 76/12/ 4
__ -l---L 00 5 * o 12 7 203
K062MOC145 76/iP/ 4

7 100 ?00 16.75 17975 20030
K06Mh3I_ 5~ 7>/1, >/ 4___ _____

6 200 300 14975 15.75 16./5-
I(O62mKC145 76/12/ '4

3 55 7o 775 89bQ 1900

___LVPw AUS I Y k~SN E SA -L"NIICAUL)ATA
K062MttC147 76/12/ b

99 1 oc S0C3 j 1270 2094C)
K062M:Q14 /qp/ tL~ 2 5 ____________

-62-

X. Database Definition in DDL.

-- SCHMA NAME 15 ZM*GCwLm@ ___ ____

AREA NAME IS ZeS9 LONTAINS 1000 PAGiES -

NUMBER Iq 1.

wI!THIN Z04STURt RA.\bE IS PAUiE I TNNU PAUL .
I.MCATItN mtDE IS DIRECT

LiROUP NAME IS TRW)ATA

wITHIN ZR$ STt'Rj RANUiE IS PAGF I THRU PAUE 350
_____ _ ,eCATIVN_ mJJS CALL USINj. CRUISEo TtWNUM __

UUPLICATrS ANE NOT1 ALLOWED
NUMbER Iq 200.

CRUILEA TPEIS_~RCE~l.-
TOWNUMJ TYPE IS CI4Af'ALTLW 4.
TewTYPj TYPE IS CHARALTLRo 4.
FAMC 0~ TYPE IS b INARY.
YEAR) TYPE IS BINARY.
MeNTHJ TYPE IS BINARY.

____DAY) TYPE IS BINARY,
TIME) TYPE IS BINARY.
L,ONCUTUDE) TYPE IS FLtATINu SHORT,

_____LATU)E, TYPE IS FLBATINU SHORT,

NITEL)AyS TYPE IS CHARALTbLR* 1.

-. iR-UkIP NAME IS cAMPLE
wITHIN ZOSU RAU- AE--mL-AEJ(

L.UCATUtN MtJDE IS VIA SAMSET SET
______ NUMBERI'cZ ._ _ __ _ _ _ _ _

OERMINI TYPE IS BINA:Z'.
_______ EFMAX, TYPE IS BINARY.*___________

TEM IN,~ TYP E I S VL A T I iei i Wf4;
TEAVUS TYPE IS FLdATINU SHtUNT,

___TEMAX, __TYPE IS FLOATINU SHORT,____ ______

-- SAL T M I W TYPESF8 ATrN'--HRT
SAL.TAVGJ TYPE IS FLttATINUa SHMRT o

_____SALTmAXS __TYPE IS FLOATINU SHORT*
- 5-fXM I N4 - - Y PE I S FL ATINtVSH1RT 9

UXAVUS TYPE IS FLOATINU SHOiRT,
___XMAXJ TYPE IS FLOATIN3 SHORT,___ ____

LILTMII T~LIS FLOATING SI-VRTS.
6IU'4TAVUJ Tvm IS FLVATINb S~tRT,

___ 1LUNTMAXJ TYPE IS FLdATINI SHO~RT, __ _____

CH4LRMINj TYPE-IS -FL5ATINGESHURT.
CklRAVGj TYPE IS FLUATINU SHORT:
CHLRMAX) TYPE IS FLOATINU SHOiRT,
8j@MASSs--1VPE1IS FLLVATINUi SHVRTO
ALI(QUdTJ TYPE IS FLtUATINL2 SHORT,

-63-

vVLFILi TVPL IS FLUATP\L SHbRT.

UNUEP I TV'PE IS 8 1NAR Y,
UNLUEl-2 1 ITvPE IS bTNARY. __ __ _

UOl't)K3 TyPE: is "J\ARY,
UNUP4) TvPL' IS t.iNARYo

UNU ,F5)_ TvPE IS 'HINARY. _____ __

GROUP NAME Is rATCH
WITHIN~ ZQSt~ RANGiE 15 PA(W 351 THRU 'WALE 1000

___3CATION P.'tiK 1S VIA SAMCAT 9ET, STCAL lbSFECAT SF*T
NUMIBER IlZ 400.

NPCUMJ Tv0E IS FLBATINLU SHbRTq
(jRCVP NAME IS rAMILY____

I T H IN L"SzTURs RANGE IS PAGF Jbi MNUi AUL 1000o
I6eCATION -t DE IS CALC USINGi FAMNAME

DUPLICATES ARENMT _ALLMAED _____________

NUMBER Ic 300.
FAMNAME) TVPE IS CH-ARACTER# 1.7.

_-iROUPNAME IYErNUS------------- __ __

WITHIN Z'5STVRs RANGE~ IS PAGE J51 THKU flAUE 1000-
60CATItN HUDE IS CALC USINGi CENAME

__________DUPL ICA TES AREN'IT ALLO3WED _____________

NUMbER It; 40).
(ZENAMEJ TYPE IS CHARALTER, Igo

UROUPNAME IS cPECIES
______--WiTHN S~R~A~i1WKG7~TRUIOCbE100

L.BCATItN MUDE IS VIA St"ECSET
NUMbER IC 320, ________________

____AMFEAMi _TvpE IS7- _~AAcTEPJ 16.
SET NAME IS TOiWSET

OWNER IS Ztlt)EAD _________________ _______

tIDER-- IS F IRST.
MEMeER IS TCWDATA

INCLUSIriN IS AUTOMATIC ____

SELECT ItisI 15 TUCURRLNTeFS :fT.
SET NAME IS SATmSET

OWNER IS TOW'ATA __________________ ____

-. fRD;4IS_ NJEXT,
EMbER IS SAmP4E

INCLUSION IS AUTB3MATIC
t. I N KE D -T-q'*- W E

SELECTI~k' IS THRU CURRENT OF SLT.
SET NAME IS FATm SET________________________

-e'NEq IS __~e;EAUD
ORDER IS FIRST.

MEMB LR IS FAmII.V_____________

~INCLUS10k) ISAUT1RTrC _
SELECTINI~ IS THRU CURRENT OF SET,

_SET NAME IS GE'JUSET
OWNER IS FAMILY

CRUER IS FIRST.
MEMbE.R IS ('E~iUS

~~INCLUSIT IS-A1JTffATKt.
SE4ECTI \M IS THRU CURRLNT OF SLT@

STNAME IS SPPCSET_____ ___ _____

5WNLR IE GLNIIS
ORDER IS NEXT,

MEMBER IS SPECIES_____ ________

-INCLUSIeY IS AUT8MATIC___
6INKEL T- OWNER

______bEl-ECTI~kf IS THRU CURRENT OF SET.

-64-

SLT NAME IS SWCCAT
OWNER IS SPEIE

ME1M~.R 15 CATCH
INCL-tJSP""N IS AUTnMATIC
L.INK(ED Tq tbANER
bELECT~I"J IS THRU CURRE.NT fjF SiETe

SET NAME IS SA"CAT
-- __ NENl IS __--____ _-

ORDER IS rQEXT.
MEM6LR IS CATCH

______ 1NI..U IiS AUT! 4.TlC,. --

L.INK(ED TA P!JWNEH

SELECTIe' IS THRU CURRE.NT OF StLTo

SU8$CHEMA NAME IS MIPLAN OF SCHEMA Z98SLHLM
COMPONENTS ARE AL.Lm

END-P

65 -

Acknowledgements

Thanks to Woollcott Smith for providing advice in the

preparation of the database and to the Information Processing

Center at the Woods Hole Oceanographic Institution for

providing the funds for M. Hunt to attend the EDMS applications

programming class at Honeywell Education Center in Phoenix,

Arizona. Thanks to Emily Evans for her care in typing this

document. Funding for the preparation of this database system

was provided by the Office of Naval Research Contract N00014-

79-C-0071 NR083-004.

II

MANDATORY DISTRIBUTION LIST

FOR UNCLASSIFIED TECHNICAL REPORTS, REPRINTS, AND FINAL REPORTS
PUBLISHED BY OCEANOGRAPHIC CONTRACTORS

OF THE OCEAN SCIENCE AND TECHNOLOGY DIVISION
OF THE OFFICE OF NAVAL RESEARCH

(REVISED NOVEMBER 1978) I
1 Deputy Under Secretary of Defense 12 Defense Documentation Center

(Research and Advanced Technology) Cameron Station
Military Assistant for Environmental Science Alexandria, VA 22314
Room 3D129 ATTN: DCA
Washington, D.C. 20301

Commander
Office of Naval Research Naval Oceanographic Office
800 North Quincy Street NSTL Station
Arlington, VA 22217 Bay St. Louis, MS 39522

3 ATTN: Code 483 1 ATTN: Code 8100
1 ATTN: Code 460 1 ATTN: Code 6000
2 ATTN: 102B 1 ATTN: Code 3300

1 CDR J. C. Harlett, (USN) 1 NODC/NOAA

ONR Representative Code D781
Woods Hole Oceanographic Inst. Wisconsin Avenue, N.W.
Woods Hole, MA 02543 Washington, D.C. 20235

Commanding Officer
Naval Research Laboratory
Washington, D.C. 20375

6 ATTN: Library, Code 2627

.1

.1

g - o a

ii x 9

o~

iz Ir -3

tiiii

c
0

.2

41 f - t ~0

t ,1W 1s-i Ii. . I

6 IS I
Si q ~A~

I ~ ~ ~ ~ ~ 4 B________ ________

I. v ILI

